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Higgs-Field Gravity 
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It is shown that any excited Higgs field mediates an attractive scalar gravitational 
interaction of Yukawa type between the elementary particles, which become 
massive by the ground state of the Higgs field. 

1. I N T R O D U C T I O N  

Until now the origin of  the mass of  the elementary particles has been 
unclear. Usually mass is introduced by the interaction with the Higgs field; 
however, in this way the mass is not explained, but only reduced to the 
parameters  of  the Higgs potential, whereby the physical meaning of the  

Higgs field and its potential remains not understood. We give here a 
contribution to its interpretation. 

There exists an old idea of Einstein (1917), the so-called "principle of  
relativity of  inertia," according to which mass should be produced by the 
interaction with the gravitational field. Einstein argued that the inertial mass 
is only a measure for the resistance of a particle against the relative acceler- 
ation with respect to other particles; therefore, within a consequent theory 
of relativity the mass of  a particle should originate in the interaction with 
all other particles of  the universe (Mach's  principle), whereby this inter- 
action should be the gravitational one which couples to all particles, i.e., 
to their masses or energies. He postulated even that the value of the mass 
of  a particle should go to zero if one puts the particle at an infinite distance 
from all others. 

This fascinating idea was not very successful in Einstein's theory of 
gravity, i.e., general relativity, although it caused Einstein to introduce the 
cosmological constant in order to construct a cosmological model with finite 
space, and Brans and Dicke (1961) to develop their scalar-tensor theory. 
But an explanation of the mass did not follow from it till now. 
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In this paper we show that the successful Higgs-field mechanism lies 
in the direction of Einstein's idea of producing mass by gravitational 
interaction. We find that the Higgs field as source of the inertial mass of 
the elementary particles has something to do with gravity (Dehnen et al., 
(1990)): it mediates a scalar gravitational interaction between massive parti- 
cles however, of Yukawa type, because the Higgs field itself becomes massive 
after symmetry breaking. On the other hand, an estimation of the coupling 
constants shows that it is improbable that this Higgs-field gravity can be 
identified with any experimental phenomenon. Perhaps its applicability lies 
beyond the scope of present experiments. 

2. GRAVITATIONAL FORCE AND POTENTIAL EQUATION 

We perform our calculations for the sake of generality with a U ( N )  
model and start from the Lagrange density of fermionic fields coupled with 
the Higgs field both belonging to the localized group U ( N )  [c = 1, ~7~ = 
diag(1, -1 ,  -1 ,  -1) ] :  

h -  h - -  a Ap, 
L=-~itpy~D~q,+h.c. 16 F ~,F~ 

2 A 
+�89 (1) 

(/z 2, A, and k are real parameters of the Higgs potential). Here D .  represents 
the covariant derivative with respect to the localized group U(N) ,  

D~. = O. + igA. (la) 

[g is the gauge coupling constant, A~, = Au%'a are the gauge potentials, and 
ra are the generators of the group U(N)]  and the gauge field strength F~. 
is determined by its commutator, F . .  = (1/ ig)[D. ,  D.] = Fa.v~'. ; further- 
more, ~ is the Yukawa coupling matrix. For applying the Lagrange density 
(1) to a special model, e.g., the Glashow-Salam-Weinberg model or even 
the GUT model, the wave function tp, the generators r. ,  the Higgs field 05, 
and the coupling matrix ~ must be specified explicitly (Dehnen and From- 
mert, to be published). 

From (1) we get immediately the field equations for the spinorial matter 
fields (d/ fields): 

k + A A +  

iyUD.tp--7(05 x + x 05)tp=O (2) 

the Higgs field 05: 

D~D~05 + 1x205 +~! (05+05)05 = -2k~r (3) 
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and the gauge fields PAPA: 

O , o F a t ~ A  - -  �9 , -a  abtzr-cA 1- tgJ b ~  r ~  = 4~rj a* (4) 

with the gauge-current density 

j~* = g(  Oy Ara O +-~h [ & +r~ Da c~ - ( DA 4, ) +r~ & ] ) (4a) 

Here f%c are the totally skew-symmetric structure constants of the group 
U(N).  The gauge-invariant canonical energy-momentum tensor reads, with 
the use of (2), 

ih - 
T~ ~ = ~ [  OT~DAO - ( D~)'y~O ] 

h 
I- lC, " a IZ;' IX ~ __  ! ,R I'~ l ~  a K? a f l  ] 4,/rl_-- z u ~  a 4 ' - "A a t  oe/3a a J 

_2a + #ll 

and satisfies the conservation law 

O~T~ ~ = 0 (6) 

Obviously, the current density (4a) has a gauge-covariant matter-field and 
Higgs-field part, i.e., JO*(0) and jo~(&) respectively, whereas the energy 
momentum tensor (5) consists of a sum of three gauge-invariant parts: 

TA ~" = TA~(O)+ T,~(F)+ TA~(&) (7) 

represented by the brackets on the right-hand side of equation (5). 
In view of analyzing the interaction caused by the Higgs field, we 

investigate first the equation of motion for the expectation value of the 
4-momentum of the matter fields and the gauge fields. From (6) and (7) 
one finds, neglecting surface integrals in the spacelike infinity, 

ao f [T ,~  T,~ d 3 x = - I  a~Ta~'(c~) d3x (8) 
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Insertion of  TA r (4') according to (5) and elimination of  the second deriva- 
tives of  the Higgs field by the field equations (3) results in 

~ I Ot [T~~ T;~~ d3X 

= k f tp[(D;~4,)+:~+.~+(D,x4,)]Od3x 

�9 I a + I,t +~ F ~,~[4, "GD 4,-(D~4,)+z~4,] d3x (9) 

The right-hand side represents the expectation value of the 4-force, which 
causes the change of the 4-momentum of the ~O fields and the F fields with 
time. However, the last expression can be rewritten with the use of the field 
equations (4) as follows: 

O~T~(F) = hFa~A(L~(0) +L~(4,))  (9a) 

One obtains instead of (9) 

0 T;,~ d3x = hF ,x,~J a(~) d3x 
Ot 

+k I ~[(D~4,)+~+~§ (10) 

where on the right-hand side we have the 4-force of the gauge field and the 
Higgs field, both acting on the matter field. Evidently, the gauge-field 
strength couples to the gauge currents, i.e., to the gauge coupling constant 
g according to (4a), whereas the Higgs-field strength (gradient of the Higgs 
field) couples to the fermionic mass parameter k (Becher et al., 1981). This 
fact points to a gravitational action of the scalar Higgs field. 

2.1. Gravitational Interaction on the Level of the Field Equations 

For demonstrating the gravitational interaction explicitly, we perform 
at first the spontaneous symmetry breaking, because in the case of a scalar 
gravity only massive particles should interact. 2 For this, /.t2<0 must be 
valid, and according to (3) and (5), the ground state 4,0 of the Higgs field 
is defined by 

4,~-4,o = v 2 = -6/-t 2/A (11) 

which we resolve as 

4,0 = vN (12) 

2The only possible source of a scalar gravity is the trace of the energy-momentum tensor. 
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with 

N + N  = 1, OAN=----O (12a) 

The general Higgs field ~b is different from (12) by a local unitary trans- 
formation: 

~b=pUN, U + U = I  (13) 

with 

O+~b=p 2, p=v+~q (13a) 

where 7/ represents the real-valued excited Higgs field. 
Now we use the possibility of a unitary gauge transformation which 

is inverse to (13): 

q~'= u-',~, 4,'= u-'q, 
(14) 

F ~  = U- 'F .~U 

so that 

c~'= p N  (14a) 

and perform in the following all calculations in the gauge (14) (unitary 
gauge). For this we note that in the case of the symmetry breaking of the 
group G 

G o d  (15) 

where G represents the rest-symmetry group, we decompose the unitary 
transformation: 

u= 8. t~, ~ & 8~ O/~ (15a) 

with the isotropy property (za generators of the unbroken symmetry) 

UN = [exp(iA ~'a)]N = N (16) 

so that 

z~N=0  (17) 

is valid. For U we write / ) =  exp(iA a~-a), where ra are the generators of the 
broken symmetry. 

Using (12)-(17), the field equations (2)-(4) take the form, avoiding 
the primes introduced in (14), 

rh 
iy"D.4, --~(1 + ~)~b = 0 (18) 



542 Dehnen e t  al. 

cg.F. ~a + igf~b~Ab'F~ ~ +~2M2b(1 + q~)2Ab* = 47rja.(~b) (19) 

M 2 1 M 2 . 2 3" 1 [- 1 
0~O,~ +~-5-q~ +~--h~-(3~0 + ~  )=--~SL q~rhq~-47rh 

q 
2 a bA / MabA aA (1+~)  

_1 

(20) 

where ~0 = r//v represents the excited Higgs field and 

rh = kv(N+~. + ~+N) (18a) 

is the mass matrix of the matter field (~0 field), 

2 9 9 + M2ab Mag=47rhg-v-N rcarg,)N (19a) 

is the symmetric matrix of the mass square of the gauge fields (A~ fields), 
and 

M 2 = -2/z2h 2, (/x 2 < 0) (20a) 

is the square of the mass of the Higgs field (q~ field). Obviously, in the field 
equations (18)-(20) the Higgs field ~ plays the role of an attractive scalar 
gravitational potential between the massive particles: According to equation 
(20), the source of r is the mass of the fermions and of the gauge bosons, 3 
whereby this equation linearized with respect to q~ is a potential equation 
of Yukawa type. Accordingly, the potential ~ has a finite range 

l = h / M  (21) 

given by the mass of the Higgs particle and v -2 has the meaning of the 
gravitational constant, so that 

v -2 = 4~rGy (22) 

is valid, where G is the Newtonian gravitational constant and 3' a dimension- 
less factor, which compares the strength of the Newtonian gravity with that 
of the Higgs field and which can be determined only experimentally; see 
Section 3. On the other hand, the gravitational potential ~o acts back on the 
mass of the fermions and of the gauge bosons according to the field equations 
(18) and (19). Simultaneously, the equivalence between inertial and passive 
as well as active gravitational mass is guaranteed. This feature results from 
the fact that by the symmetry breaking only one type of mass is introduced. 

3The second  term in the bracke ts  on  the r igh t -hand  s ide of  (20) is pos i t ive  wi th  respect  to the 
s igna ture  of  the metric.  
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2.2. Gravitational Interaction on the Level of  the Momentum Law 

First we consider the potential equation from a more classical stand- 
point. With respect to the fact of a scalar gravitational interaction, we 
rewrite equation (20) with the help of the trace of the energy-momentum 
tensor, because this should be the only source of a scalar gravitational 
potential within a Lorentz-covariant theory. From (5) one finds after sym- 
metry breaking, in analogy to (7), 

ih - 
T~" ( tp ) = -~ [ tpy" D~ tp - (Oh(O) Y~ O ] (23a) 

]l a p.v 1 ~ a a/8 T~"(a)=-~-~(r ~Fo - ~  F ~Fo ) 

1 
- - ~ u  A ,lvz-a ) +47rh(l+q~)2M2ab(A,AAb~ 1~ ~aoab-~ (23b) 

1 _ 2)}] (23c) Tfl'(~)=v2[Oa~O"q~--~6A {O~o ~ M2 0 q~ +~-~(1  + ~)2(1 -2q~ 

From this it follows immediately using the field equation (18) that 

1 T =  TA A = ~rfi$(1 + q~)- M2abA~AbX(l+~) 2 
47rh 

+ V  2 ~ 2  (@4 q- 4 ~ 3  q - ) --0A~0A~] (23d) 2h 4 ~ 2 - 1  

The comparison with equation (20) shows that the source of the potential 
is given by the first two terms of (23d), i.e., by T(O) and T(A),  as 

expected. In this way we obtain as potential equation using (22) 

M 2 1 M 2 
O~'0.q~+-~q~+~-~(3q~2+q~ 3) = - 4 7 r G y ( l + q ~ )  ' [T(qJ)+ T(A)] (24) 

In the linearized version (with respect to ~o) equation (24) represents a 
potential equation for ~o of Yukawa type with the trace of the energy- 
momentum tensor of the massive fermions and the massive gauge bosons 
as source. 

Finally, we investigate the gravitational force caused by the Higgs field 
in more detail. Insertion of  the symmetry breaking according to (12) up to 
(17) into the first integral of the right-hand side of (9) yields 

KA = kO[ ( D~ 4) ) +.~ + :~+ ( DA O ) ] O 

=t~rhtpO~q~+v(l+~)[(DAN)+k~t)+k~+tpD~N] (25) 
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Substitution of the conglomerate kq~0 by the left-hand side of the field 
equation (3) results, with the use of (13a) and (14a), in 

[ 1 M2bA~AbU(l+q~)]Oaqo Kx= ~OrhO-4~ h 

1 0.[(1 + q~)2M2.b(A'~;tAb~ - 1 ~  ~'aaab~3 4~rh 2 C'A z~x~F,t  ]3  

t) 2 

+-- ig (1  + ~ ~ + ~' q~)-F ~,.[N "caD N-(D"N)+'raN] (26) 
2 

By insertion of (26) into the right-hand side of (9), the last term of (26) 
drops out against the last term of (9), whereas the second term of (26) can 
be combined with O~T~(F) to O.T~(A) according to (23b). In this way we 
obtain, neglecting surface integrals in the spacelike infinity, 

O f [T;t~176 t~rhO- 147"rhM2abA:Ab~(l+q~)] Oxq~d3x 

(27) 

In total analogy to the procedure yielding the potential equation (24), we 
substitute the bracket of the 4-force in (27) by the traces T(0) and T(A) 
given by (23d): 

of f Ot [TA~176 d3x = (l+~)-ltT(O)+T(A)]Oxq~d3x (28) 

Considering the transition from equation (9) to (10), we can express 
the time derivative of the 4-momentum of the gauge fields by a 4-force 
acting on the matter currents. Restricting this procedure to the massless 
gauge fields, we get from (28) 

o f  o ,~ [Ta~ TA (a ,~)]  d3x 

= hF z~j ~(O) d3x+ (l+r (29) 

Here the first term of the right-hand side describes the 4-force of the massless 
gauge bosons acting on the matter field coupled by the gauge coupling 
constant g [see (4a)], whereas the second term [identical with the right-hand 
side of (28)] is the attractive gravitational force of the Higgs field q~ acting 
on the masses of the fermions and of the gauge bosons, which are simul- 
taneously the source of the Higgs potential q~ according to (24). This 
behavior is exactly that of classical gravity, coupling to the mass (--- energy) 
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only and not to any charge. However, the qualitative difference with respect 
to the Newtonian gravity consists, besides the nonlinear terms in (24), in 
the finite range of r caused by the Yukawa term. 

3. F I N A L  R E M A R K S  

We want to point to some interesting features of our result. First note 
that in view of the right-hand side of (28), it is appropriate to define 

ln(1 + r = X (30) 

as a new gravitational potential, so that the momentum law reads 

~ f [Ta~176 = [T(~)+T(A)IO~xdSx (31) 

Then the nonlinear terms concerning ~ in (24) can be expressed by T(~)  -= 
T(X) according to the third term of the right-hand side of (23d). In this 
way the field equation for the potential X (excited Higgs field) takes the 
very impressive form 

M 2 
O,O•e 2x + h i  e 2x = -87rG7[ T(6 )  + T(A) + T(X)] (32) 

Equations (31) and (32) are indeed those of scalar gravity with self-inter- 
action in a natural manner. For the understanding of the Higgs field it may 
be of interest that the structure of equation (32) exists already before the 
symmetry breaking. Considering the trace T of the energy-momentum tensor 
(5), one finds with the use of the field equations (2) and (3) 

M 2 
a , 0 ~ ( 6 + 6 )  +--~-(&+~b) = - 2 T  (33) 

with M 2=-21z2h 2. Accordingly, the Yukawa-like self-interacting scalar 
gravity of the Higgs field is present within the theory from the very beginning. 
Equation (33) possesses an interesting behavior with respect to the symmetry 
breaking. Then from the second term on the left-hand side there results in 
view of (11) in the first step a cosmological constant M2v2/h2; but this is 
compensated exactly by the trace of the energy-momentum tensor of the 
ground state. It is our opinion that this is the general property of  the 
cosmological constant, also in general relativity. 

Furthermore, because in (21) the mass M is that of the Higgs particle, 
the range l of the potential ~ should be very short, so that until now no 
experimental evidence for the Higgs gravity exists, at least in the macroscopic 
limit. For this reason it also appears improbable that it has something to 
do with the so-called fifth force (Eckhardt et aL, 1988). Finally, the factor 
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y in (22) can be estimated as follows: Taking into consideration the unified 
theory of  electroweak interactions, the value of v [see (19a)] is correlated 
with the mass M w  of the W bosons according to v - z =  7 r g 2 2 h / M  2 [g2 is 
the gauge-coupling constant of the group SU(2)].  Combination with (22) 
results in 

g ~ (  M P ~  2 1032 
Y = - 2 - \ M w ]  = 2 • (34) 

(Mp is the Planck mass). Consequently, the Higgs gravity represents a 
relatively strong scalar gravitational interaction between massive elementary 
particles, with, however, extremely short range and with the essential 
property of  quantizability. If any Higgs field exists in nature, this gravity 
is present. 

The expression (34) shows that in the case of a symmetry breaking 
where the bosonic mass is of the order of the Planck mass, the Higgs gravity 
approaches the Newtonian gravity, if the mass of the Higgs particle is 
sufficiently small. In this connection the question arises, following Einstein's 
idea of relativity of inertia, if it is possible to construct a +ensorial quantum 
theory of  gravity with the use of the Higgs mechanism, leading at last to 
Einstein's gravitational theory in the classical macroscopic limit. 
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